The development of new therapies for coronary artery disease (CAD) poses a substantial challenge, and several recent approaches have failed for lack of efficacy. Human genetics has the potential to identify new targets for the treatment of CAD, as evidenced by the accelerated pace of therapeutic advances that have occurred as a result of advances in genetics. 

The intense focus on the genetics of CAD will provide an impetus to revitalize the field and lead to future therapies for this common disease. A perspective article in Nature Genetics provides an overview of brain systems such as the hypothalamus and brainstem that sense and integrate nutritional signals controlling eating. 

The information into a better understanding of the basic biological mechanisms and how the results can be applied in many forms, including information about genomic sequences, molecular pathways, and different populations of people. Those data create a potential bonanza, if scientists can overcome one stumbling block: how to handle the enormous and fast-growing deluge of data that already contains 10^6 different studies and continues to rapidly expand in size. The rapid and massive production of data, known as "big data," is characterized by the "three Vs": volume of data, velocity of processing the data, and variability of data.

The innovation of finding new applications for "big data" is moving beyond the realm of software developers to touch all aspects of our daily lives. As the amount of "big data" continues to explode, it becomes necessary to consider the role of big data in expanding our understanding and improving our health. Figures and tables are provided to illustrate the potential of big data in the future of health and medical research.

A recent study examined the role of objective short sleep duration in adolescents. They found that short sleep duration is a risk factor for the development of obesity. The study appeared in Advances in Nutrition, which provides an overview of brain systems such as the hypothalamus and brainstem that sense and integrate nutritional signals controlling eating.

The study appeared in Nature Genetics, which provides an overview of brain systems such as the hypothalamus and brainstem that sense and integrate nutritional signals controlling eating. The information into a better understanding of the basic biological mechanisms and how the results can be applied in many forms, including information about genomic sequences, molecular pathways, and different populations of people. Those data create a potential bonanza, if scientists can overcome one stumbling block: how to handle the enormous and fast-growing deluge of data that already contains 10^6 different studies and continues to rapidly expand in size.

The rapid and massive production of data, known as "big data," is characterized by the "three Vs": volume of data, velocity of processing the data, and variability of data. As the amount of "big data" continues to explode, it becomes necessary to consider the role of big data in expanding our understanding and improving our health. Figures and tables are provided to illustrate the potential of big data in the future of health and medical research.